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Abstract 

A Completely Automated Public Turing test to Tell Computers and Humans 
Apart (CAPTCHA) is the most prominent form of Human Interaction Proof 
(HIP) on the internet. They usually consist of a combination of letters and 
numbers that have been distorted to make it difficult for computers to 
predict. In this paper we evaluate the effectiveness of 3 different machine 
learning algorithms in breaking gimpy CAPTCHAs from Captcha.net. We 
begin with a deterministic segmentation algorithm to separate each 
CAPTCHA into a set of letters. We then apply Naive Bayes, Probabilistic 
Principal Component Analysis (PPCA) and a Feed Forward Neural Network 
(FFNN) to classify each of the letters. If any of the above mentioned 
classifiers are capable of predicting the CAPTCHAs with a success rate 
significantly greater than 0.01% then the CAPTCHA can be considered 
broken and cannot be used as a HIP [1]. 

 

1 Introduction  

The task of distinguishing humans and computers is a fairly old concept that dates back to 
the original Turing Test [2]. This task has become increasingly more popular as the number 
of internet services have grown (such as e-mail, social media, online banking etc..). Without 
an automatic filter to differentiate between machines and humans, malicious programs can 
consume resources that would otherwise have been spent providing services to humans.  
Systems that are capable of effectively distinguishing between other machines and people 
are called HIPs [3].  

An effective HIP should be a challenge that humans are capable of so lving more than 80% of 
the time, while machines should succeed less than 1 in 10,000 tries [1].  This constraint has 
led to the development of various types of CAPTCHAs. An overview of CAPTCHAs can be 
found on www.captcha.net.  

Most CAPTCHAs on the internet are in the form of an Optical Character Recognition (OCR) 
challenge, where users are required to decipher warped letters and numbers on various 
backgrounds to successfully overcome the HIP. While humans are relatively good at 
predicting characters under various transformations, machines have significant difficulty. 
Thus, by studying CAPTCHA breaking as a subset of the OCR problem, this project aims to 
shed light into various methods of overcoming limitations that deterministic algorithms 
have. In particular, 3 algorithms will be considered and tested on the CAPTCHAs. If any of 
the algorithms are capable of successfully predicting the CAPTCHAs significantly more 
than 0.01% of the time then the CAPTCHA can be considered broken.  



2 Approach 

CAPTCHAs can either be classified as a whole or letter by letter. When CAPTCHAs consist 
of complete words, language models can be exploited to improve classification accuracy. 
Mori and Malik [4] demonstrated the use of bigrams in breaking the EZ-Gimpy CAPTCHA 
set with 92% accuracy.  

However, the CAPTCHAs used in this project consist of four random letters that have been 
warped on various backgrounds. Hence a language model cannot be used. For the purpose of 
this project we will aim to break the CAPTCHAs by analyzing them letter by letter similar to 
the approach of Chellapila and Patrice [1]. Note that Chellapila and Patrice only used a 
convolution neural network to classify each of the letters. Here we will use Naive Bayes, 
PPCA, and a FFNN to classify each of the letters. Chellapila and Patrice were capable of 
achieving a 90% letter recognition accuracy on the EZ-Gimpy CAPTCHAs, which translated 
to only 34.4% accuracy in breaking the entire CAPTCHA [1]. Since the CAPTCHAs we will 
be analyzing use similar warping as the EZ-Gimpy data set, we will compare our 
performance to Chellapila and Patrice by comparing our letter recognition accuracy with 
theirs. We will not compare our total accuracy of breaking the CAPTCHA with them since 
the length of our CAPTCHAs is different than theirs. 

 

2 .1  Seg me nta t io n  

Figure 1 shows some examples of the types of CAPTCHAs that are considered in this paper.  

 

  

Figure 1: Example of CAPTCHAs 

 

In order to segment the letters, a simple deterministic algorithm was used. The algorithm 
presented here is similar to the one presented by Chellapila and Patrice [1]. The main 
difference is that they chose to use the red channel while we converted the images to 
grayscale. We chose  grayscale instead of the red channel because in our set of CAPTCHAs 
the text was always black. 

In our algorithm the images were converted to grayscale, thresholded to retain only pixels 
with intensity lower than 0.3 (where 0 is black and 1 is white), binarized (all pixels that did 
not have intensity 1 were set to 0), inverted, and lastly Connected Component (CC) analysis 
was done to isolate individual letters. Since the letters come in different sizes and shapes, all 
the individual letters were resized to 15 x 15 pixels (this was the smallest observed 
dimension among all segmented images). Roughly 70% of the CAPTCHAs had exactly 4 
connected components and were classified as properly segmented. The remaining 
CAPTCHAs had 3 or less CCs and were broken by dividing the largest CC into 2 or more 
smaller components. This division did not always yield correct segmentation. Figures 2 and 
3 show some examples of segmented CAPTCHAs. 

 

Figure 2: Properly segmented CAPTCHA 

 

 

Figure 3: Improperly segmented CAPTCHA 



Figures 2 and 3 show the segmented versions of the CAPTCHAs shown in figure 1. The 
segmentation algorithm works sufficiently well when the letters are not connected  in the 
original image. Since our algorithms are applied on a letter basis, even though the entire 
CAPTCHA may not be segmented properly, at least half of the segmented letters yield good 
training/testing data. In order to apply the various classifiers described below, each letter 
was reshaped from a 15x15 matrix to a 225x1 vector. 

 

2 .2  Na iv e  B ay es  (NB )  Cla ss i f i er  

A Naive Bayes classifier works on the assumption that features are independent given the 
class.  

                 

 

 (1) 

Using eq.1 we then classify each letter based on the decision rule shown in eq. 2. 

        
 

              

 

 (2) 

Here, the features are the binary values of each pixel in the segmented image and the classes 
range from 0 to 25 representing each of the possible alphabets. 

 

2 .3  Pro ba bi l i s t i c  Pr inc ipa l  Co mpo nent  A na ly s i s  (PPCA)  

PPCA uses a generative model to classify each letter. In order to apply PPCA, the training 
set must first be categorized by letters. For each of the letters, we then compute a subspace  
by picking the M largest eigenvectors of the covariance matrix    described by eq. 3. 

   
 

 
                   

 

 

   

 (3) 

In eq. 3    is the data covariance matrix for letter  ,     is the     training image for letter   
where        and     is the mean of all  the training images for letter  . Once the subspace 

is computed, each test image    can be approximated by eq. 4: 
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where      is the     largest eigenvector of   ,            
      

  is the sample variance 

associated with the     principal direction in the training data for letter   and            
     

where    
  

 

 
    

  
      is the per pixel out-of-subspace variance and   is the dimension of 

our data [5]. 

The likelihood of each image is then computed using eq. 5: 
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where     can be computed as     
    and    

  is the     largest eigenvalue of   . 

Once the likelihood of the image under each subspace model    is computed, the final 



decision rule is given by eq. 6. 

        
 

               (6) 

 

 

2 . 4  Feed  Fo rwa rd  Neura l  Netw o rk  (FFNN)  

The FFNN considered in this paper consists of 1, 2 and 3 hidden sigmoid layers and a final 
softmax layer to classify the segmented letters. Training is done via back propagation and 
the test set is classified through a single forward pass on the FFNN using the trained 
weights. For a detailed description on the implementation of a FFNN see [6]. 

The effects of standard PCA on dimensionality reduction prior to training and classification 
using the FFNN is also considered. 

 

3 Experiments  and Results  

In this section we describe the experiments conducted to tune each of the classifiers and the 
final classification accuracies achieved as a result of the training. The data set consisted of 
560 CAPTCHAs. All training and validation is limited to the first 75% of the data (i.e. the 
first 420 CAPTCHAs). Testing is only conducted once the model has been generated and 
fixed. It is conducted on the remaining 140 CAPTCHAs.  

 

3 .1  NB  Cla ss i f i er  

Since the NB classifier does not have any hyper parameters that need to be tuned , the 
weights         and       were trained on all of the 420 CAPTCHAs set aside for training 
and validation. The letter training accuracy was 67%. This translates to a CAPTCHA training 
accuracy of               . 

The decision rule explained in eq. 2 was then applied to the test data to yield a letter 
classification accuracy of 56% which translates to a CAPTCHA testing accuracy of       
         . 

 

3 .2  PPCA Cla ss i f i er  

For the PPCA classifier, the main parameter to be tuned is the subspace dimension (that is 
the number of eigenvectors used to approximate each letter). 

 

 

Figure 4: PPCA accuracy as a function of the number of basis vectors used  



Figure 4 shows the letter training and validation accuracies achieved for the various 
subspace dimensions. Training was conducted on the first 75% of the 420 CAPTCHAs set 
aside for training and validation. The remaining 25% was used as the validation set. Since 
the validation accuracy is highest when the subspace dimension is 10, the final PPCA model 
was generated using only 10 basis vectors. Figure 5 shows the 10 basis vectors for the letter 
'a'. 

 

 

Figure 5: The 10 largest eigenimages for the letter 'a'  

 

Using PPCA with only 10 basis vectors, a letter testing accuracy of 73.75% was achieved. 
This is a CAPTCHA testing accuracy of                     which is significantly 
better than the testing accuracy of the NB classifier.  

 

3 .3  FFNN Cla ss i f i er  

The FFNN has multiple parameters to be tuned. In order to identify the best parameters, a 
one layer FFNN was trained for 200 epochs for varying values of batch size, eps, 
momentum, L2 regularization, and the number of hidden units. Since all the parameters  had 
to be tuned simultaneously there are too many values to present and are hence omitted for 
brevity. The final set of parameters chosen for training are shown in  table 1.  

 

Table 1: Optimum Parameters for FFNN 

 Batch Size EPS Momentum L2 Hidden Units 

Value 150 0.01 0.9 0.0001 100 

 

The training was conducted on 315 of the 420 CAPTCHAs set aside for training. The model 
was validated on the remaining 105 CAPTCHAs to test the generalization ability of the 
model. Early stopping was used to terminate the training if the validation accuracy dropped 
for more than 2 successive turns or if the training accuracy reached 100%.  

 

 

Figure 6: Letter Classification Error for 1 layer network 



Figure 6 shows the letter training and validation error curves for a 1-layer FFNN. Using the 
parameters mentioned in table 1 and the model trained on the first 315 CAPTCHAs a letter 
testing accuracy of 76.79% was achieved. A similar model was generated using a 2-layer and 
3-layer FFNN. However, the 2-layer and 3-layer FFNNs achieved letter testing accuracies of 
only 76.25% and 75.68%. The training time also went up significantly to 100+ epochs for 
the 2-layer network and 400+ epochs for the 3-layer network. The slight deterioration in the 
testing accuracies for the deeper FFNNs is most likely due to the existence of poorly 
segmented letters in the training data. The fact that the training data is fairly small also 
increases the chances of the 2-layer and 3-layer FFNNs learning erroneous features. Hence, 
the effects of standard PCA to reduce the data dimension is not studied for the higher order 
FFNNs. 

 

 

Figure 7: Variation in letter validation error as the data dimension is reduced via PCA 

 

Figure 7 shows the effects of PCA on the letter validation accuracy. It tells us that the letter 
validation error is lowest when the data is projected down to 35 dimensions. Using this 
projection, the 1-layer FFNN was capable of achieving an optimum letter testing accuracy of 
84.11%. This results in the highest CAPTCHA testing accuracy of              
       in comparison to the NB and PPCA classifiers.  

 

4 Conclusion 

Looking at the results presented in section 3 it is apparent that the FFNN used in conjunction 
with standard PCA is the most powerful classifier of the three. It achieved a 50.05% 
CAPTCHA recognition rate as opposed to the 29.58% and 9.8% classification ra tes of the 
NB and PPCA classifiers. The letter recognition accuracy of the FFNN used in conjunction 
with standard PCA was 84.11%. This is only about 6% less than the letter recognition 
accuracy presented by Chellapila and Simard. Hence, from our results we can conclude that 
the effectiveness of a simple FFNN can be boosted using PCA and it can achieve results 
close to that of a convolution neural network for OCR. We can also conclude that this set of 
CAPTCHAs cannot be used as a HIP since the CAPTCHA classification rate of the FFNN 
was 50% which is significantly greater than 0.01%. 
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